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BACKGROUND: Some patients with COVID-19 who have recovered from the acute infection
after experiencing only mild symptoms continue to exhibit persistent exertional limitation
that often is unexplained by conventional investigative studies.

RESEARCH QUESTION: What is the pathophysiologic mechanism of exercise intolerance that
underlies the post-COVID-19 long-haul syndrome after COVID-19 in patients without
cardiopulmonary disease?

STUDY DESIGN AND METHODS: This study examined the systemic and pulmonary hemody-
namics, ventilation, and gas exchange in 10 patients who recovered from COVID-19 and
were without cardiopulmonary disease during invasive cardiopulmonary exercise testing
(iCPET) and compared the results with those from 10 age- and sex-matched control par-
ticipants. These data then were used to define potential reasons for exertional limitation in
the cohort of patients who had recovered from COVID-19.

RESULTS: The patients who had recovered from COVID-19 exhibited markedly reduced peak
exercise aerobic capacity (oxygen consumption [VO2]) compared with control participants
(70 � 11% predicted vs 131 � 45% predicted; P < .0001). This reduction in peak VO2 was
associated with impaired systemic oxygen extraction (ie, narrow arterial-mixed venous ox-
ygen content difference to arterial oxygen content ratio) compared with control participants
(0.49 � 0.1 vs 0.78 � 0.1; P < .0001), despite a preserved peak cardiac index (7.8 � 3.1 L/min
vs 8.4�2.3 L/min; P > .05). Additionally, patients who had recovered from COVID-19
demonstrated greater ventilatory inefficiency (ie, abnormal ventilatory efficiency [VE/
VCO2] slope: 35 � 5 vs 27 � 5; P ¼ .01) compared with control participants without an
increase in dead space ventilation.

INTERPRETATION: Patients who have recovered from COVID-19 without cardiopulmonary
disease demonstrate a marked reduction in peak VO2 from a peripheral rather than a central
cardiac limit, along with an exaggerated hyperventilatory response during exercise.
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Take-home Points

Study Question: What is the pathophysiologic
mechanism of exercise intolerance that underlies
post-COVID-19 long-haul syndrome in patients with
COVID-19 without cardiopulmonary disease?
Results: Patients who have recovered from COVID-
19 demonstrate reduced peak exercise aerobic ca-
pacity with impaired systemic oxygen extraction and
abnormal ventilatory efficiency slope.
Interpretation: Patients without cardiopulmonary
disease who have recovered from COVID-19
demonstrate a marked reduction in peak oxygen
consumption from a peripheral rather than a central
cardiac limit, along with an exaggerated hyper-
ventilatory response during exercise.
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Globally, more than 100 million confirmed cases of
COVID-19 caused by SARS-CoV-2 infection have been
reported. The acute manifestations of SARS-CoV-2
infection can involve the pulmonary, cardiovascular,
neurologic, hematologic, and GI systems.1 Persistent
physical symptoms after acute COVID-19 are common
and includes fatigue, dyspnea, chest pain, cough, and
neurocognitive symptoms.2-6 In one retrospective study
of approximately 1,300 hospitalized patients with
COVID-19 discharged to home, only 40% of patients
were independent in all activities of daily living at
30 days,6 and almost 40% of patients were unable to
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return to normal activities at 60 days after hospital
discharge.7 Several recent studies have reported
persistent symptoms among patients who demonstrated
mild COVID-19 months after recovery from the acute
illness.8-10 Persistent cardiorespiratory symptoms in
those who have survived COVID-19 can be categorized
into two clinical entities: (1) those directly related to
organ injury or iatrogenic consequences during the
acute phase and (2) those with persistent symptoms,
including a decrease in exercise capacity determined
objectively by cardiopulmonary exercise testing (CPET),
with normal findings from pulmonary function testing,
resting echocardiography, and CT scan of the chest
months after the onset of acute symptoms,11,12 the so-
called post-COVID-19 long-haul syndrome.

In a recent study, Baratto and colleagues13 showed that
during CPET performed at the time of hospital discharge,
patients who have recovered from COVID-19 exhibited a
hyperventilatory response and reduced exercise capacity.
The latter was attributed primarily to underlying anemia
resulting in both reduced systemic oxygen delivery and
extraction. However, the pathophysiologic basis for the
persistent exertional and functional limitation among
patients who have had COVID-19 and who have long
since recovered from mild acute illness remains
unknown. Accordingly, in the current study, we aimed to
help characterize further persistent exercise intolerance
among patients who have recovered from COVID-19
without evidence of cardiopulmonary disease or anemia
using invasive CPET (iCPET).
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Methods
Study Population and Design

We consecutively enrolled all patients who had recovered from

COVID-19 and were referred to the Brigham and Women’s Hospital

Dyspnea Clinic (Boston, MA) and the Yale New Haven Hospital

Pulmonary Vascular Disease Clinic (New Haven, CT) between

February and June 2021 for unexplained exercise intolerance. The

study protocol was approved by Partners Healthcare Human
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220
Research Committee (Identifier: 2011P000272) and Yale University
Institutional Review Board (Identifier: IRB 2000024783). All patients
signed informed consent and agreed to have their anonymized
clinical and investigative data used for research purposes.

All patients underwent conventional investigative testing during
outpatient clinic evaluation, including CT scan of the chest,
pulmonary function test, and resting echocardiography. In none of
the patients were test results deemed contributory to the persistent
exertional limitation before iCPET referral. Specifically, no evidence
was found of parenchymal lung disease on chest CT imaging, and all
patients demonstrated left ventricle ejection fraction of > 50% with
no evidence of moderate or severe valvular heart disease, no
evidence of right-to-left intracardiac shunt defect on resting right
heart catheterization and echocardiography, and no evidence of
acute coronary syndrome defined by ST-segment elevation
myocardial infarction, non-ST-segment elevation myocardial
infarction, unstable angina, or a combination thereof during exercise
testing.

Invasive Cardiopulmonary Exercise Testing

Our method for invasive CPET was described previously.14-18 Right
heart catheterization was performed in the supine position with a
[ -#- CHE ST - 2 0 2 1 ]
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five-port pacing pulmonary artery catheter (Edwards LifeSciences)
inserted percutaneously under fluoroscopic and ultrasound guidance
into the internal jugular vein and a radial artery catheter
concurrently placed in the radial artery. Patients underwent a
symptom-limited incremental CPET using an upright cycle
ergometer with a breath-by-breath assessment of gas exchange
(ULTIMA CPX; Medical Graphics Corporation) along with
continuous 12-lead electrocardiography monitoring. Patients
underwent 2 min of rest followed by 2 min of unloaded cycling at
40 to 60 RPM. Work rate then was increased continuously using a
ramp protocol at 5, 10, 15, or 20 W/min depending on the patient’s
functional status, until peak exercise was achieved as evident either
by peak respiratory exchange ratio of > 1.10 or peak heart rate of >
85% predicted. Pulmonary and systemic hemodynamics were
monitored continuously and simultaneously during exercise (Xper
Cardio Physiomonitoring System; Phillips). Pulmonary pressures
were recorded at the end of passive exhalation. When respirophasic
changes persisted, an electronic average over three respiratory cycles
was used.19 Arterial and mixed venous blood gases and pH were
collected during each minute of exercise, and the arterial-mixed
venous oxygen content difference was calculated. Systemic oxygen
extraction (EO2) was calculated as arterial oxygen content (CaO2)
minus CvO2 divided by CaO2. Fick cardiac output and stroke
volume were determined every minute. Oxygen delivery (DO2) was
calculated by multiplying cardiac output by the CaO2. Physiologic
dead space was calculated as: VD/VT ¼ (PaCO2 – PETCO2) / PaCO2,
where VD is dead space volume, VT is tidal volume, PaCO2 is the
PCO2 in arterial blood, and PETCO2 is the mixed expired PCO2.

Pulmonary vascular resistance was calculated as: mean pulmonary
artery pressure minus pulmonary artery wedge pressure divided by
chestjournal.org
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cardiac output, expressed in Woods units. Stroke volume (SV) was
calculated as cardiac output (CO) divided by the heart rate. CO and
SV were indexed to body surface area to obtain both cardiac index
and SV index. Pulmonary artery compliance was calculated as the
ratio of SV to pulmonary artery pulse pressure and was expressed as
milliliters per millimeter of mercury. Total pulmonary resistance was
calculated as mean pulmonary artery pressure divided by CO as
expressed in Woods units.

To investigative further the determinants of exercise limitation in
patients who have recovered from COVID-19, we identified 10 age-
and sex-matched control participants from our iCPET database. This
cohort consisted of symptomatic patients who previously underwent
iCPET for clinical investigation of exertional intolerance, but who
exhibited a normal physiological limit to exercise defined by a peak
oxygen uptake (peak oxygen consumption [VO2]) and peak CO
of $ 80% predicted.

Statistical Analysis

Unless otherwise stated, values are presented as mean � SD.
Comparisons of baseline characteristics, resting hemodynamics,
and CPET parameters between patients who have recovered
from COVID-19 and control participants were performed using
an independent t test for normally distributed data and the
Wilcoxon rank-sum test for data nonnormally distributed data.
The c 2 test was used to analyze dichotomous variables. A P
value of < .05 was considered significant. Statistical analyses
were performed using GraphPad Prism version 9 software
(GraphPad Software) and SAS version 9.4 software (SAS
Institute, Inc.).
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Results

Demographic and Clinical Characteristics

We included 10 patients who have recovered from
COVID-19 who at the time of iCPET were
demonstrated negative results by polymerase chain
reaction for SARS-CoV-2. Nine patients previously had
experienced mild, acute SARS-CoV-2 infection that did
not require hospitalization,20 whereas one patient
underwent a brief 2-day in-patient stay during which
Remdesivir and corticosteroids were administered. Two
patients were excluded during the enrollment period:
one patient with long-standing history of fibrotic
interstitial lung disease and another who exhibited
iatrogenic chronotropic incompetence from
B-adrenergic blocker therapy. The latter patient did not
attain maximum exercise effort by either by peak
respiratory exchange ratio of > 1.10 or peak heart rate of
> 85% predicted.

No differences were found in age, hemoglobin
concentration, BMI, medication use, or comorbidities
between patients who had recovered from COVID-19
and control participants. Importantly, the average
interval between onset of acute COVID-19 illness (ie,
from the time of positive SARS-CoV-2 polymerase chain
reaction results) to iCPET was 11 months (Table 1).
Patients who had recovered from COVID-19
demonstrated normal resting right heart hemodynamic
values. The baseline characteristics, comorbidities,
resting right heart hemodynamics, and pulmonary
function test results are summarized in Table 1.

Peak Exercise Hemodynamic Response

The maximum invasive CPET and cardiopulmonary
hemodynamic data are summarized in Table 2. At peak
exercise, patients who had recovered from COVID-19
exhibited markedly reduced aerobic capacity (ie, peak
VO2 < 80% predicted) with a normal peak DO2 and
reduced EO2 compared with control participants (Fig 1).
Patients who had recovered from COVID-19 showed
greater peak exercise mixed venous oxygen saturation
(50 � 10% vs 22 � 5%; P < .0001) and peak VO2

content (33 � 6 mm Hg vs 27 � 5 mm Hg; P ¼ .01)
compared with control participants. Additionally,
patients who had recovered from COVID-19 exhibited a
greater degree of ventilatory inefficiency compared with
control participants (ie, abnormal ventilatory efficiency
[VE/VCO2] slope: 35 � 5 vs 27 � 5; P ¼ .01) (Fig 2). Of
the 10 patients who had recovered from COVID-19,
only one patient demonstrated a VE/VCO2 slope of
3
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TABLE 1 ] Q30Baseline Characteristics and Resting Cardiopulmonary Hemodynamics

Variable
Patients Recovered from

COVID-19 (n ¼ 10)
Control Participants

(n ¼ 10) P Value

Characteristics

Age, y 48 � 15 48 � 8 .87

Female sex 9 (90) 8 (80) .53

BMI, kg/m2 28 � 6 24 � 6 .11

Hemoglobin, g/dL 13.4 � 1.1 14.2 � 1.4 .16

Interval from acute COVID-19 infection to iCPET, mo 11 � 1 Not applicable ...

Comorbidities

Systemic hypertension 2 (20) 3 (30) .61

Diabetes 0 1 (10) .30

Medications

b-Adrenergic receptor blocker 1 (5) 1 (5) 1.00

ACE inhibitor or ARBQ31 2 (20) 0 .13

Diuretics 0 1 (10) .30

Pulmonary function test

FEV1, % 97 � 1 100 � 1 .34

FVC, % 96 � 1 104 � 1 .19

FEV1 to FVC ratio, % 101 � 3 98 � 5 .18

Resting upright right heart catheterization

SaO2, % 98 (97-98) 98 (97-98) .64

MvO2, % 73 � 3 66 � 6 .01

Right atrial pressure, mm Hg 0 (0-1) 3 (0-4) .35

Stroke volume index, mL/m2 36.3 � 10.3 40.3 � 12.8 .44

Cardiac index, L/min/m2 3.2 � 0.6 2.8 � 0.5 .13

mPAP, mm Hg 8 � 1 12 � 3 .002

PAWP, mm Hg 2 � 2 5 � 3 .01

PVR, WU 1.13 (0.87-1.52) 1.26 (0.95-2.01) .44

PA compliance, mL/mm Hg 5.6 � 2.4 7.7 � 3.3 .13

SVR index, dynes/s/cm5/m2 2,554 � 880 2,924 � 487 .26

Data presented as No. (%),mean � SD, or median (interquartile range). ACE ¼ angiotensin converting enzyme; iCPET ¼ invasive cardiopulmonary test;
mPAP ¼ mean pulmonary artery pressure; MvO2 ¼ mixed venous oxygen saturation; PA ¼ pulmonary artery; PAWP ¼ pulmonary artery wedge pressure;
PVR ¼ pulmonary vascular resistance; SaO2 ¼ oxygen saturation in arterial blood; SVR ¼ systemic vascular resistance; WU ¼ Woods unit.
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< 30 at 28.21 In the patients who had recovered from
COVID-19, a trend toward lower peak right atrial

pressure (3 � 4 mm Hg vs 6 � 3 mm Hg; P ¼ .08) was

found, along with a significantly reduced left-side filling

pressure (pulmonary artery wedge pressure, 8 �
4 mm Hg vs 13 � 3 mm Hg; P ¼ .01). An appropriate

decrease in dead space ventilation was found in patients

who had recovered from COVID-19 from rest to peak

exercise (0.39 � 0.1 vs 0.22 � 0.1; P ¼ .001) (Fig 3). The

total pulmonary resistance at peak exercise was normal

in both groups (ie, peak total pulmonary resistance < 3

Woods units).
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Discussion
In the current study, we demonstrate that nearly 1 year

after recovery from mild disease, patients who

experienced COVID-19 and had with decreased exercise

tolerance, but no long-term cardiopulmonary disease

sequelae, exhibited a peripheral, rather than a central,

cardiac limit to aerobic exercise characterized by

impaired systemic EO2 with resulting increased peak

exercise mixed venous oxygen saturation and peak VO2

content. Additionally, they also demonstrated a

hyperventilatory response during exercise from

enhanced chemoreflex sensitivity.
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TABLE 2 ] Maximum Exercise Cardiopulmonary Hemodynamics

Variable
Patients Recovered from

COVID-19 (n ¼ 10)
Control Participants

(n ¼ 10) P Value

Maximum CPET data

Peak VO2, % predicted 70 � 11 131 � 45 .001

Peak VO2, mL/min/kg 16.7 � 4.2 33.5 � 12.9 .001

Peak heart rate, % predicted 84 � 8 84 � 2 .85

Delta ETCO2, mm Hg –0.5 (–4 to 1) –1 (–2 to 13) .57

Peak SaO2, % 98 (98-98) 97 (97-98) .01

Peak MvO2, % 50 � 10 22 � 5 < .0001

Venous PO2, mm Hg 33 � 6 22 � 2 .001

VE/VCO2 slope 35 � 5 27 � 5 .01

CaO2, mL/dL 18.6 � 1.3 19.5 � 2.3 .29

Peak DO2, mL/kg/min 3.6 � 1.4 4.2 � 1.5 .33

Peak EO2 0.49 � 0.1 0.78 � 0.1 < .0001

Peak exercise hemodynamics

Cardiac output, % predicted 115 � 44 123 � 34 .64

Cardiac index, L/min/m2 7.8 � 3.1 8.4 � 2.3 .59

Stroke volume index, mL/m2 54.1 � 20.8 63.5 � 22.2 .34

RA pressure, mm Hg 3 � 4 6 � 3 .08

mPAP, mm Hg 18 � 5 30 � 4 < .0001

PAWP, mm Hg 8 � 4 13 � 3 .01

PVR, WU 0.69 � 0.44 0.99 � 0.36 .11

TPR, WU 1.2 � 0.4 2.0 � 0.4 .002

PA compliance, mL/mm Hg 4.7 � 2.3 4.3 � 2.1 .67

SVR index, dynes/s/cm5/m2 1,272 � 398 1,119 � 283 .33

Data are presented as No. (%), mean � SD, or median (interquartile range). CaO2 ¼ arterial oxygen content; CPET ¼ cardiopulmonary exercise testing;
DO2 ¼ oxygen delivery; EO2 ¼ systemic oxygen extraction; ETCO2 ¼ end tidal CO2; mPAP ¼ mean pulmonary artery pressure; MvO2 ¼ mixed venous
oxygen saturation; PA ¼ pulmonary artery; PAWP ¼ pulmonary artery wedge pressure; PVR ¼ pulmonary vascular resistance; SaO2 ¼ oxygen saturation in
arterial blood; RA ¼ right atrial; SVR ¼ systemic vascular resistance; TPR ¼ total pulmonary resistance; VE/VCO2 ¼ ventilatory efficiency; VO2 ¼ oxygen
consumption; WU ¼ Woods unit.
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According to the Fick principle, in the absence of a
pulmonary mechanical limitation, reduced peak VO2 is
the result of a blunted CO and cardiac index response,
impaired systemic EO2 (ie, arterial-mixed venous
oxygen content difference), or both. In the current
study, the depressed peak VO2 in patients who had
recovered from COVID-19 was driven primarily by
reduced systemic EO2 (Fig 1). In fact, the peak CO
response was robust, representing on average
115% of the predicted value, and the DO2 was
preserved. We also demonstrated that in both control
participants and patients who have recovered from
COVID-19, throughout incremental exercise testing,
increases in VO2 were driven by increments in both
EO2 and cardiac index (Fig 1). However, unlike
control participants, at 75% of peak VO2 and at
peak VO2, further increases in VO2 in patients who
had recovered from COVID-19 were attenuated
chestjournal.org
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by limitations imposed by EO2, rather than cardiac

index.

The delivery and subsequent use of oxygen is

determined by convective and diffusive processes.
Convective oxygen delivery involves alveolar ventilation
and the transport of hemoglobin-bound oxygen by the
heart and systemic vasculature to the peripheral
microcirculation (ie, DO2). Diffusive oxygen delivery
involves the diffusion of oxygen across the alveolar-
pulmonary capillary membrane onto hemoglobin and
the unloading of oxygen from hemoglobin in skeletal
muscle capillaries where the process of aerobic
mitochondrial respiration generates ATP Q. A study from
Baratto and colleagues13 demonstrated that the reduced
systemic EO2 among patients who have recovered from
COVID-19 at time of hospital discharge was driven in
part by reduced convective oxygen delivery from
5
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Figure 1 – Q29A-B, Graphs showing the components of the Fick principle in the patients who recovered from COVID-19 (A) and control participants (B)
during maximum Q34incremental invasive cardiopulmonary testing at rest, 25% of pVO2, 50% of pVO2, 75% of pVO2, and at pVO2. Data presented as
mean � SD. pVO2 ¼ peak oxygen consumption; VO2 ¼ oxygen consumption. EO2 ¼ systemic oxygen extraction.
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underlying anemia (ie, reduced CaO2 and DO2). Our
findings differ from those of Baratto and colleagues for

two main reasons. First, the current study examined

patients who had recovered from COVID-19 with

persistent exertional and functional limitation

approximately 11 months after acute viral illness.

Additionally, apart from one patient, these patients who

had recovered from COVID-19 did not require in-

patient care. Second, unlike the study from Baratto and

colleagues, the current patients who recovered from

COVID-19 did not have associated anemia or
6 Original Research
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parenchymal lung disease. Importantly, we found that
convective oxygen transport in the patients who
recovered from COVID-19 was preserved (ie, normal
DO2). Therefore, the impaired EO2 observed in the
current study was attributed primarily to reduced
oxygen diffusion in the peripheral microcirculation,
resulting in increased peak exercise mixed venous
oxygen saturation and peak VO2 content (Table 2).

More recently, two noninvasive CPET studies in patients
who have recovered from COVID-19 have been
reported.22,23 The first study by Rinaldo and colleagues22
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Figure 2 – Graph showing abnormal ventilatory efficiency in patients
who have recovered from COVID-19 at the AT. AT ¼ anaerobic
threshold; VE/VCO2 ¼ ventilatory efficiency.
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evaluated 75 patients 3 months after hospital discharge.
Fifty-two percent and 24% of the patients who had
recovered from COVID-19 were categorized as having
critical and severe disease, respectively, whereas 63% of
patients demonstrated residual parenchymal lung
disease on chest CT imaging. The authors found that
patients with reduced peak exercise capacity (defined by
peak VO2 of < 85% predicted) attained anaerobic
threshold early, but exhibited no pulmonary mechanical
limit to exercise (ie, preserved breathing reserve index)
with preserved ventilatory efficiency (ie, VE to VCO2

ratio slope of 28 � 3). Also, no correlation was found
between reduction in peak exercise capacity with
reduced diffusing capacity on lung function test or
parenchymal lung disease on chest CT imaging. Based
on these findings, the authors concluded that the
reduced peak exercise capacity seen in the patients who
had recovered from COVID-19 is because of
deconditioning. The second study by Skjorten and
colleagues23 examined 189 patients also 3 months after
hospital discharge, of whom 20% required ICU
management.23 The peak VO2 (% predicted) was lower
among patients who had recovered from COVID-19 and
who required ICU management, but no difference was
found in the breathing reserve and VE to VCO2 ratio
slope between patients treated in the ICU and those who
were not. Across the entire cohort, reduced peak VO2 (<
80% predicted) was observed in 31% of participants.
When compared with a reference population, patients
who recovered from COVID-19 exhibited preserved
ventilatory efficiency (ie, VE to VCO2 ratio slope of 28 �
5) and breathing reserve (30 � 17%) along with
chestjournal.org
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preserved oxygen pulse (15 � 4 mL/stroke).
Accordingly, the authors concluded that deconditioning
was the major cause of exercise limitation in the patients
who had recovered from COVID-19. In our study of
patients approximately 11 months after recovery from
mild disease, deconditioning was an unlikely
explanation for the impaired systemic EO2. In fact, the
findings of our study argue against muscle
deconditioning as the cause of impaired EO2. This is
because the hallmark of deconditioning is reduced peak
CO.24 In the current study, among the patients who
recovered from COVID-19, the peak CO (% predicted)
was normal at 115 � 44% predicted. Additionally,
deconditioning causes little or no change in peak
exercise EO2.

24,25 Furthermore, the patients presented
herein who had recovered from COVID-19
demonstrated lower low biventricular filling pressures,
rather than the higher pressures encountered in
detrained individuals, which is attributable to cardiac
atrophy and reduced ventricular compliance.26,27

During exercise, the greater need for local tissue
metabolism coupled with reduced availability of tissue
oxygen results in greater production of local vasodilatory
substances in the skeletal muscles. This mechanism,
along with sympathetic nervous system-mediated
vasoconstriction to nonexercising areas, allows for
increased tissue oxygen delivery during exercise.28 We
recently demonstrated in a cohort of patients with
chronic fatigue syndrome that systemic microcirculatory
dysfunction with microvascular shunting (impaired
systemic oxygen extraction) was prevalent particularly
among patients who also exhibited small-fiber
neuropathy on skin biopsy.29 Immunohistochemical
studies have shown that these small fibers regulate
microvascular tone through sympathetic and
parasympathetic cholinergic synapses of perivascular
myocytes.30 Although considerable overlap exists in the
clinical presentation of patients with post-COVID-19
and chronic fatigue syndrome,12 whether a similar
neuropathologic mechanism is seen in the patients who
have recovered from COVID-19 remains to be
determined.

The other important finding of the current study is the
exaggerated hyperventilatory response among the
patients who recovered from COVID-19, as evident by
the abnormal VE to VCO2 ratio slope (Fig 2). Arterial
CO2 set point is influenced by acidemia, hypoxemia,
baroreceptors in the pulmonary vasculature, and
sympathetic nervous system hyperactivity.31,32 VE to
VCO2 ratio is measured at the anaerobic threshold
7
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Figure 3 – Graphs showing blood gas data from patients who have recovered from COVID-19 at rest and peak exercise. Data are presented as in-
dividual data point for each patient and mean � SD, with blue dots representing data at rest and red dots representing data at peak exercise. P value
obtained using independent t test. VD/VT ¼ ratio of dead space to tidal volume.
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before the onset of anaerobic metabolism and lactic
acidosis generation. Additionally, no evidence was found
of resting or exercise pulmonary hypertension or
interstitial lung disease with the expectant decrease in
dead space ventilation seen during exercise (Figs 2, 3).
The abnormal ventilatory efficiency in the patients who
had recovered from COVID-19 thus can be attributed to
enhanced peripheral mechanoergoreflex and
metaboergoreflex sensitivity, rather than a primary
cardiopulmonary or central mediated hyperventilation
process.33 In patients with heart failure, for example,
skeletal muscle group III-IV afferents play an important
role the exaggerated hyperventilatory response seen
during exercise. These mechanoreceptors and
metaboreceptors detect changes in muscle length,
8 Original Research
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volume (ie, muscle loss or wasting), and by-products
of muscle metabolism and stimulate group III-IV
afferents of the spinal cord to the medullary respiratory
centers to stimulate ventilation.34,35 Muscle weakness
and fatigue are a common manifestation of post-
COVID-19 syndrome,36 even among those who
experienced mild COVID-19.37 It is possible that, in
the patients who have recovered from COVID-19,
similar to heart failure patients, a skeletal muscle
myopathic process characterized by a shift in fiber
type,38 reduced muscle aerobic enzyme activity with
early dependance on anaerobic metabolism,39 or both
culminate in overactivation of group III-IV skeletal
muscle afferent activity with resulting exaggerated
hyperventilation.
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Results from the current study need to be interpreted in
the context of limitations. Data for this study were
drawn from a small number of patients who had
recovered from COVID-19. However, the peripheral
limitation to exercise intolerance exhibited by the
patients who recovered from COVID-19 were striking
compared with those of control participants, and the
finding of ventilatory inefficiency (ie, abnormal VE to
VCO2 ratio slope) is in keeping with a recent report.13

Additionally, by using iCPET, we provided a
comprehensive and unparalleled insight into the long-
term sequelae of SARS-CoV-2 infection that is otherwise
not apparent on conventional investigative testing.

The control participants were derived from iCPET
evaluation for unexplained exertional dyspnea, and
therefore, the control participants may not be
representative of a completely healthy population.
However, the control participants were selected based on
a preserved peak exercise capacity defined by a normal
chestjournal.org
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cardiac limit to exercise (peak VO2 and peak CO of $
80% predicted). Therefore, they represent a studied
population with a normal physiologic response to
exercise and reflect so-called symptomatic normal
individuals.

Interpretation
Exercise limitation is common manifestation of post-
COVID-19 syndrome months after resolution of mild
acute COVID-19 illness. A peripheral, rather than a
central, cardiac limit to exercise characterized by
diffusion defect in oxygen delivery (ie, impaired systemic
EO2) contributes to patients who have recovered from
COVID-19 demonstrating a depressed aerobic exercise
capacity. Additionally, patients who have recovered
from COVID-19 also exhibit an exaggerated
hyperventilatory response during exercise. Further
studies are warranted to investigative the pathobiologic
basis of these mechanisms.
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